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The paper focuses on student-teachers’ geometric diagrams to mediate the emergence of different 
proofs for a geometric proposition. For Peirce, a diagram is an icon that explicitly and implicitly 
represents the deep structural relations among the parts of the object that it stands for. Geometric 
diagrams can be seen as epistemological tools to understand explicit and hidden geometric relations. 
The systematic observation of and experimentation with geometric diagrams triggers abductive, 
inductive, and deductive reasoning which allows for the understanding of the conditions given for a 
geometric construction and its necessary logical consequences. We adopt Stjernfelt’s model of 
diagrammatic reasoning to analyze two proofs for a geometric task posed to student-teachers who 
participated in a four-month classroom teaching experiment. 
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Introduction 
Peirce conceptualizes sign as a holistic triadic entity (object, sign-vehicle, interpretant). The 

word sign is sometimes used to refer to the object itself and, other times, to the mode of 
representation of that object. Peirce (1906) makes reference, through the paper, to the sigh being a 
general as to its object and as to its matter. The reader, then, is left with the task of interpreting either 
meaning from the context in which the word sign is used. His addition of the interpretant, as the third 
component of the sign, is one of his many significant contributions to semiotics. This component 
takes into account the effect of the sign-vehicle in the mind of the Person who interprets, uses, or 
produces it.  

Peirce also classifies sign-vehicles as icons, indexes, and symbols according to their relation with 
the object they stand for. Fisch (1986) argues that this triad is not an autonomous species of sign-
vehicles as if it were dogs, cats, and mice. Rather, it is a nested triad in which more complex sign-
vehicles contain and involve specimens of simpler ones. Symbols typically involve indices which, in 
turn, involve icons. In other words, icons are incomplete indices which are, in turn, incomplete 
symbols.  

The icon is a sign-vehicle that bears some sort of resemblance or similarity to its object. Peirce 
subdivides the icons into three types: images, diagrams, and metaphors. He argues, icon-diagrams 
have structural similarities with the structure of their Objects. This enables the observation, 
experimentation, and the emergence of inferential reasoning. He calls this amalgamated thinking 
diagrammatic reasoning. The index, instead, has a cause-effect connection to its object, and it directs 
the attention to its object by blind compulsion that hinges on association by contiguity (CP 1.558, 
1867). The symbol, instead, hinges on intellectual operations, cultural conventions, or habit (CP 
3.419, 1892).  

By diagrammatic reasoning, I mean reasoning which constructs a diagram according to a precept 
expressed in general terms, performs experiments upon this diagram, notes their results, assures 
itself that similar experiments performed upon any diagram constructed according to the same 
precept would have the same results, and expresses it in general form. (CP 2.96, 1902) 

Diagrams as Tools for Inferential Thinking 
Peirce defines icons far beyond their merely perceptual aspects: “A great distinguishing property 

of the icon is that by the direct observation of it other properties concerning its object can be 
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discovered than those which suffice to determine its construction” (Peirce 1895, Quoted in Stjernfelt, 
2007, italics added). He clearly establishes diagrams as icons and as the only sign-vehicles from 
which more can be learned about the object beyond the grammar and syntax of their construction. 
While physical diagrams remain in the field of perception, new relations among their parts can 
possibly emerge by means of thought-experimentation and imagination. A diagram, then, can be 
characterized in one’s mind in a variety of ways, “…as a token, as a general sign, as a definite form 
of relation, as a sign of an order in plurality, i.e., of an ordered plurality or multitude” (Robin 1967,  
Catalogue number 293, p. 31). The diagram, being an icon, has some kind of similarity with its 
Object in the sense that it displays the interrelations between the parts of the object in a skeleton-like 
sketch (Stjernfelt, 2007). 

Peirce also argues that “the iconic diagram and its Initial Symbolic Interpretant constitute what… 
Kant calls schema, which is on one side an object capable of being observed while on the other side 
is a General” (NEM, p. 316) and that more can be learned about its object by contemplation of the 
explicit and implicit relations hidden in the diagram. In fact, he considers that diagrams are 
epistemological tools for inferential thinking. According to him “all necessary reasoning is 
diagrammatic" (Robin 1967, Catalogue number 293, p. 31). 

Being a student of Kant’s, Peirce adopts and adapts Kant’s concept of geometric construction: 
“such a construction is formed according to a precept furnished by the hypotheses; being formed, the 
construction is submitted to the scrutiny of observation, and new relations are discovered among its 
parts, not stated in the precept by which it was formed, and are found, by a little experimentation, to 
be such that they will always be present in such a construction” (CP 3.560, italics added). This 
operational definition entails that once an empirical diagram is constructed what follows is some kind 
of mental experimentation and inferential experimentation. 

A classic example of inferential manipulation and experimentation is Euclidean geometry. 
“Euclid first announces, in general terms, the proposition he intends to prove, and then proceeds to 
draw a diagram, usually a figure, to exhibit the antecedent condition thereof” (NEM, p. 317). 
Nowadays, given the dragging mode of dynamic geometry environments, the manipulation of 
geometric figures is expedited and, with it, the possibility of intentional experimentation. The 
observation of variant and invariant relations among the elements of the figure facilitates the 
conjecturing of its properties as well as the process of proving or disproving them. Stjernfelt, a 
semiotician, who has dedicated articles and books to the analysis of Peirce’s diagrammatology, 
extensively argues that his definition of icon is non-trivial. This definition, he argues, avoids the 
weakness of most definitions of similarity because of its connection to the notion of observation and 
inferential experimentation to discover additional pieces of information about the object it stands for. 

…all deductive reasoning, even simple syllogism, involves an element of observation; namely, 
deduction consists in constructing an icon or diagram the relations of whose parts shall present a 
complete analogy with those of the parts of the object of reasoning, of experimenting upon this 
image in the imagination, and of observing the result so as to discover unnoticed and hidden 
relations among the parts (CP 3.363, italics added). 

Diagrammatic Reasoning Process 
Stjernfelt captures the essence of the process of diagrammatic reasoning in Figure 1. This is to 

say, a process which is rooted in perceptual and mental activity to produce chains of inferences. This 
figure is especially useful for thinking about proving and problem-solving processes. This skeleton-
like figure, which is an icon-diagram itself, synthesizes a manifold of relationships that amalgamate 
the construction of a diagram, the observation of structural relations among its parts, and the physical 
and mental manipulation to produce a chain of deductions so as to attain a conclusion.  
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Figure 1. Diagrammatic reasoning process (Stjernfelt model, 2007). 

In addition, Stjernfelt also describes this process in terms of the emergence of evolving 
interpretants generated during the transformation of diagrams. In this transformation, the implicit 
aspects of the object of the diagram are unveiled by means of the analogy between the relations 
among the characteristic properties of the object and the structural relations among the parts of the 
diagram. That is, the interpreting Person transforms icon-diagrams into sign-vehicles that have more 
and more symbolic aspects that hinge on mental operations and inferential reasoning. It is in this 
sense that “symbols grow,” as Peirce says, because the meanings of their objects grow deeper and 
more general in the mind of the interpreting Person. A sequence of interpretants generated in this 
process is described by Stjernfelt (2007, p. 104) as follows: 

a. Symbol (1) 
b. Immediate iconic interpretant: Initial pre-diagrammatic icon-token that is rule-bound  
c. Initial interpretant: (a+c) constituting the initial transformand diagram, the ‘Schema’ 

diagram-icon 
d. Middle interpretant: the symbol-governed diagram equipped with possibilities of 

transformation (with two sources, a as well as c) 
e. Eventual, rational interpretant: Transformate diagram  
f. Symbol (2): Conclusion 
g. A post-diagrammatical interpretant (different from b): This interpretant is an interpretant of 

a, but now, the diagrammatic reasoning is enriched by the total interpretant of the concept a 
[represented by Symbol (1)]. 

It is important to note that transformate diagrams are substantially contained in the transformand 
diagram with all its significant features. That is, diagrammatic reasoning is the process by which the 
interpreting Person intentionally endeavors both in the observation and manipulation of initial 
diagram-tokens (transformand diagrams) to mentally enrich and transform them (transformate 
diagrams) so that hidden relations among the parts of the object can be unveiled. These 
transformations facilitate the inference of the hidden structure of the object.  

Methodology 
A constructivist four-month classroom teaching-experiment on the teaching-learning of geometry 

was conducted with nine pre-service and in-service mathematics student-teachers who were taking a 
geometry methods course using the Geometer’s Sketchpad (GSP). The main goal of this experiment 
was to improve student-teachers’ ability to conjecture and to prove geometric propositions in plane 
Euclidean geometry using the GSP. An inquiry approach was used in which tasks were posed, 
drawings were constructed and manipulated by the students, conjectures were made, and proofs were 
generated. Student-teachers proved geometric statements in class and in homework assignments 
using this inquiry approach. They completed weekly homework assignments of at most seven tasks 
using the GSP. At the beginning of the semester, student-teachers were given a pre-test with twelve 
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tasks to be solved using pencil and paper. At the end of the semester, they were given a post-test with 
thirteen tasks to be solved using the GSP. The purpose of these tests was to observe the influence, in 
the student-teachers’ proving process, of the dynamic diagrams constructed, observed, and 
manipulated in the GSP environment.  

Here we analyze, from the diagrammatic reasoning point of view, two proofs that pre-service 
student-teachers produced for task#1 in homework #9. This task could be proved in different ways: 
without using auxiliary lines and using auxiliary lines. The core of the geometric argument for each 
of the proofs was the conceptualization of congruent triangles embedded, implicitly or explicitly, in 
the diagram.  

Data Analysis 
In homework #9 student-teachers were given seven tasks. Task#1 was the following (see Figure 

2):  

 

Figure 2. Task#1 given to student-teachers.  

There are many different ways to prove this task but only one without the use of auxiliary lines. Only 
one student-teacher completed the proof this way. Four student-teachers constructed auxiliary lines 
EB and DC and completed the proof. Two student-teachers used the property that the median from 
the vertex-angle in an isosceles triangle is also perpendicular bisector. The other two student-teachers 
were unable to complete the proof because they constructed an incorrect drawing by extending the 
sides AB and AC from vertices B and C. The teacher wrote her proof and then presented it to the 
class. 

First Proof 
When the student explained her proof to the class, she showed on the computer screen the 

sequence of diagrams (Figures 3a, 3b, & 3c). This sequence conceals a sequence of interpretants, in 
the mind of the student-teacher (the interpreting Person), that allowed her a mental transformation of 
the same physical diagram (transformand diagram, i.e., Figure 3a) into transformate diagrams 
(Figures 3b & 3c) to conceptualize geometric relations. Finally, she presented the written proof of the 
given statement. 

She constructed a robust isosceles ΔABC using two radii of a circle centered on the vertex-angle 
A. In the extensions of sides AB and AC, from vertex-angle, she constructed congruent line segments 
AD and AE respectively. She continued with the construction of the midpoint M on base BC and of 
the ΔEMD (see Figure 3a). Then the student-teacher wrote down the given information ACAB @ and

AEAD @ (see Figure 3b) as well as the proof that ΔBDM is congruent to ΔCEM by SAS. For the 
congruence of the triangles she explained that MCMB @ because point M is midpoint of base BC; 

ECDB @ because ACEAABDA +@+ ; and ACBABC Ð@Ð as base-angles of isosceles triangle 
ΔABC. The congruence of triangles ΔBDM and ΔCEM implies EMDM @ proving that triangle 
ΔDME is isosceles (see Figure 3c). 
  

Construct an isosceles triangle ABC (AB @ AC). Extend the congruent sides BA
and CA from the common vertex A and take AD = AE respectively. Let point M the
midpoint of the base BC.
Prove that the triangle MDE is an isosceles triangle.

Task 19



Mathematical Processes 546 

 

Wood, M. B., Turner, E. E., Civil, M., & Eli, J. A. (Eds.). (2016). Proceedings of the 38th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Tucson, AZ: 
The University of Arizona. 

       

  
    (a)           (b)    
       (c) 

Figure 3. (a) Initial construction; (b) Focus on isosceles triangles ΔABC and ΔADE; (c) Comparison 
of triangles ΔDMB and ΔEMC.  

Following is also the description of the sequence of interpretants generated: 

• Inmmediate iconic interpretant: Visual perception of two isosceles triangles ΔABC and 
ΔADE and the triangle ΔEMD (Figure 3a, i.e., transformand diagram). 

• Initial Interpretant: A realization that adding congruent line segments ( ACAB @  and 
AEAD @ ), by parts, would generate new congruent line segments ( ACEAABDA +@+  

then ECDB @ ) (Figure 3b, i.e., transformate diagram). 
• Middle Interpretant: ΔDMB and ΔEMC have two congruent sides ( ECDB @  and 

MCMB @ ) and the respective angles between them are also congruent ( ACBABC Ð@Ð ) 
being the base angles of isosceles ΔABC (Figure 3b, i.e., transformate diagram). 

• Rational interpretant: Given that ΔABC is isosceles with ACAB @ , the congruence of the 
base angles is implied ( ACBABC Ð@Ð ). From the fact that point M is the midpoint of side 
BC, the congruence of BM and MC is also implied ( MCBM @ ). Also using the congruence 

ECDB @  triangles ΔDMB and ΔEMC are congruent by SAS. (Figure 3b, i.e., transformate 
diagram). 

• Eventual rational interpretant: Line segments DM  and EM  are the third sides of congruent 
triangles ΔDMB and ΔEMC; thus these line segments have to be congruent (Figure 3c). 

• Post-diagrammatical interpretant: Consider triangles ΔEMC and ΔDMB. How are they 
related? 

• MCBM @  (point M is the midpoint of BC ) 

M

E

A

B C

D

M

E

A

B C

D

M

E

A

B C

D



Mathematical Processes 547 

 

Wood, M. B., Turner, E. E., Civil, M., & Eli, J. A. (Eds.). (2016). Proceedings of the 38th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Tucson, AZ: 
The University of Arizona. 

• ACBABC Ð@Ð  (base-angles in the isosceles triangle ΔABC) 
• DBEC @  ( ABDAACEA +@+  because DAEA @  and ABAC @  adding by parts) 
• Therefore, DMBEMC D@D  by SAS and the corresponding sides EM and DM are congruent 

making triangle EMDD  an isosceles triangle (Figure 3c, i.e., transformate diagram). 

Her written proof certainly corresponds to the inferred intepretants from her diagrams (see Figure 
4): 

 
Figure 4. First proof of Task#1 without auxiliary lines.  

In the above proof, the student-teacher used direct relations between congruent corresponding 
sides and angles of isosceles triangles in the diagram to prove the congruence of triangles ΔEMC and 
ΔDMB. Then she implied the congruence of line segments EM and DM . Thus, she proved that 
ΔEMD is isosceles. 

Second Proof 
The four student-teachers who used the auxiliary line segments EB  and DC  gave essentially 

the same proof (see Figure 5). 
 

   
Figure 5. Drawings using the auxiliary line segments EB and DC. 

Figure 5 presents the diagrams that four student-teachers gave using auxiliary lines EB and DC 
(or DB and EC). Below is the proof written by one of the four students, which corresponds to the first 
diagram on the left in Figure 5. The other student-teachers wrote similar proofs presenting the same 
argument (see Figure 6).  

 

Figure 6. Second proof of Task#1 using auxiliary lines.  

This student-teacher started with the relations ACAB @ and AEAD @ according to the construction 
of the isosceles triangles in Figure 5 and he also used the congruent vertical angles CADÐ  and

Student#6 compared the triangles EMC and DMB.
Given M is the midpoint of BC, \CM = BM
Given isosceles ABC, \AC = AB and ÐC = ÐB
Given AE = AD, then AE + AC = AD + AB, \EC = BD
Therefore, triangles EMC and DMB are congruent by SAS.
This implies that ME = MD making triangle MED isosceles
triangle.
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BAEÐ . He proved that triangles ΔABE and ΔACD are congruent by SAS. From this he implied that 
corresponding sides and angles are congruent ( CDBE @  and ACDABE Ð@Ð ). Using the 
congruence of the base angles ACBABC Ð@Ð  in the isosceles triangle ΔABC and the congruence 

ACDABE Ð@Ð , he proved that DCMEBM Ð@Ð  as sums of congruent angles. Combining the 
relations MCBM @ , CDBE @ , and DCMEBM Ð@Ð , he proved the congruence of triangles 
ΔEBM and ΔDCM by SAS. An implication of the congruence of triangles ΔEBM and ΔDCM is that 

DMEM @ . Thus, he concluded that ΔEMD is isosceles. 
The above description can be unfolded into a sequence of diagrams that conceals a sequence of 

interpretants in the mind of the student-teacher (the interpreting Person). These interpretants allow 
for mental transformations of the same physical diagram (transformand diagram, i.e., Figure 7a) into 
transformate diagrams (Figures 7b, 7c, & 7d) to conceptualize other geometric relations and, finally, 
the proof of the given statement. 
 

      

  
           (a)      (b)           

(c)          (d) 

Figure 7. (a) Initial construction; (b) Comparison of triangles ΔABE and ΔACD created by auxiliary 
lines EB and DC; (c) Comparison of triangles ΔEBM and ΔDMC; (d) Conclusion triangle ΔEMD is 

isosceles.  

• Immediate iconic interpretant: Visual perception of triangles (transformand diagram) 
constituted by two isosceles triangles (ΔABC and ΔADE) and also ΔEMD (Figure 7a, i.e., 
transformand diagram). 

• Initial Interpretant A realization that drawing line segments EB  and DC  would generate 
two new sets of triangles: ΔEAB and ΔDAC & ΔEBM and ΔDCM (Figure 7b, i.e., 
transformate diagram). 
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• Middle Interpretant: The segments EM  and DM  which are sides of ΔEBM and ΔDCM are 
also sides of ΔEMD. (Figure 7c, i.e., transformate diagram) 

• Rational interpretant: A realization that ACAB @  are congruent sides of the given isosceles 
ΔABC. AEAD @  is a structural relation of the task. DACEAB Ð@Ð  are vertical angles. 
Thus, ΔEAB and ΔDAC are congruent by SAS. Then both, the congruence of line segments 
EB  and DC  and the congruence of angles EBAÐ  and DCAÐ  are implied. (Figure 7b, i.e., 
transformate diagram) 

• Eventual rational interpretant:  
• How the line segments EM  and DM  could be compared? To which other triangles do they 

also belong? Triangles ΔEBM and ΔDCM are the triangles with the line segments EM  and 
DM  as sides (Figure 7c, i.e., transformate diagram). 

• Post-diagrammatical interpretant: 
• Compare triangles ΔEBM and ΔDCM 
• MCBM @  (point M is the midpoint of BC ) 
• DCEB @  (implication from the congruence of triangles ΔEAB and ΔDAC) 
• DCMEBM Ð@Ð  (adding by parts congruent angles DCAEBA Ð@Ð  and 

ACMABM Ð@Ð ) 
• Therefore, DCMEBM D@D  by SAS and the corresponding sides EM and DM are 

congruent making triangle EMDD  an isosceles triangle (Figure 7d, i.e., transformate 
diagram). 

In the above proof the student-teacher used auxiliary lines EB and DC. Then he used direct 
relations between congruent sides and angles to prove, first, the congruence of ΔEAB and ΔDAC 
and, then, the congruence of ΔEBM and ΔDCM. From the last congruence of triangles he implied the 
congruence of line segments EM  and DM . This proves that ΔEMD is an isosceles triangle. 

Conclusion 
The significance of diagrammatic reasoning in the teaching-learning of geometry during the 

proving process is analyzed in this paper. The Stjernfelt’s model of diagrammatic reasoning, based 
on Peirce’s own definition, was adopted. Essentially, diagrammatic reasoning consists of the 
systematic observation of a geometric diagram, the experimentation with the geometric diagram, and 
the inferential reasoning emerging from the observation of unveiled relations among the elements of 
the geometric diagram. Observation allows the visual perception of the explicit relations between the 
elements of the diagram. Experimentation with the diagram verifies these relations and facilitates the 
investigation of further relations. Finally, inferential reasoning emerges mediated by prior geometric 
knowledge and it makes possible the completion of the proving process. 

Given the spatial and visual nature of Euclidean geometry, thinking and proving without 
diagrams seems to be an impossible task. Thus gaining awareness of diagrammatic reasoning as an 
epistemological tool appears to be useful for teachers to direct not only their own thinking but also 
the thinking of their students.  
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